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This paper presents a method to distinguish and link inhomogeneous mixing with subsequent ascent and collision-coalescence. 
Three stratocumulus clouds analyzed were collected over the U.S. Department of Energy’s Atmospheric Radiation Measurement 
Southern Great Plains site during the March 2000 cloud Intensive Observation Period. The criteria are presented to distinguish the 
two processes. Inhomogeneous mixing with subsequent ascent is identified if cloud along an aircraft horizontal leg is 
non-drizzling and the relationship between cloud volume-mean radius and liquid water content is negative; in contrast, drizzling 
and positive relationship between the above two properties are the criteria for collision-coalescence. To link the two processes, 
threshold function, the possibility of occurrence of collision-coalescence, is employed; the big droplets generated during the in-
homogeneous mixing with subsequent ascent increase the threshold function, initiates collision-coalescence and produces drizzle 
drops. To the authors’ knowledge, this is the first study on distinguishing and linking inhomogeneous mixing with subsequent 
ascent and collision-coalescence based on observational data. 
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Warm rain initiation has been a central topic of cloud phys-
ics for a long time [1–3]. Although cloud droplets are ini-
tially produced by condensation of water vapor on cloud 
condensation nuclei, condensation alone can not produce 
droplets large enough to initiate collision-coalescence; re-
garding warm rain initiation, discrepancy exists between 
theories and observations. First, the spectra generated by 
condensation are much narrow because condensation rate is 
negatively correlated with droplet size [4,5]. In contrast to 
the theoretical spectra, the observational ones are much 
wider [6]. The instrument could introduce some broadness 
of spectra [7,8]; however, even if the spectral broadening 
due to instrumental artifacts is taken into account, the nar-
rowest spectra in the cumulus are still broader than the cal-
culated spectra in adiabatic growth [9]. Second, the time 

needed for warm rain initiation from theoretical calculation 
is much longer than that needed in reality based on observa-
tions [10]. Third, the standard deviation of spectra generally 
increases or keeps nearly constant with height, whereas in 
adiabatic theory, standard deviation should decrease with 
height [11]. Fourth, cloud does not need the depth predicted 
in adiabatic theory to produce drizzle drops. Herckes et al. 
[12] observed a warm shallow fog with height less than 100 
m was drizzling.  

Several mechanisms have been advanced to explain the 
discrepancy between observations and theories [13], such as 
fluctuation of supersaturation field [14,15], enhanced colli-
sion kernel due to turbulence [16,17], and the role of giant 
or ultragiant cloud condensation nuclei [18,19]. Another 
common and likely mechanism is through entrainment of 
subsaturated environmental air and subsequent mixing 
[20–24]. Over the last few decades, great efforts have been 
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devoted to understanding the effect of entrainment mixing 
on cloud microphysical properties through observations and 
modeling. The homogeneous [25,26] and inhomogeneous 
entrainment-mixing processes [26–28] have been explored 
in detail. Theoretically, inhomogeneous mixing with sub-
sequent ascent can produce large droplets which are im-
portant for the collision-coalescence process; these two 
processes are closely connected, and collision-coalescence 
could be seen as a continuum of inhomogeneous mixing 
with subsequent ascent [29]. Distinguishing and linking the 
two processes from observational data are critical to under-
stand the effect of entrainment mixing on warm rain initia-
tion. But such studies are lacking. This study presents a 
method to distinguish them mainly through cloud micro-
physical relationships and link them with autoconversion 
threshold function (T) proposed by Liu et al. [30,31] using 
aircraft in situ observations of stratocumulus clouds. To the 
authors’ knowledge, this is the first time to distinguish and 
link them based on observational data.  

1  Description of cloud IOP and data 

The cloud Intensive Observation Period (IOP) was con-
ducted by the Atmospheric Radiation Measurement Re-
search Facility at the Southern Great Plains site during 1–26 
March 2000, and aimed at documenting mid-latitude cloud 
properties for evaluating models and retrieval algorithms. 
Of particular relevance to this work are the 12 flights taken 
with the Cessna Citation research aircraft of the University 
of North Dakota. Cloud and drizzle size distributions were 
measured with a Particle Measuring Systems (PMS) For-
ward Scattering Spectrometer Probe (FSSP-100) and an 
optical array probe (1D-C), respectively. The FSSP probe 
sizes and counts cloud droplets in 15 bins, with bin centers 
from 2.7 to 30 μm in radius; the 1D-C probe has 30 bins 
with bin centers from 12 to 300 μm in radius. Measurements 
of both instruments are corrected with standard procedures 
[32–35]. The aircraft was also mounted with a Cloud Parti-
cle Imager (CPI) manufactured by the Stratton Park Engi-
neering Company; images of cloud particles collected with 
CPI are used, together with air temperature, to ascertain the 
clouds analyzed are liquid-water clouds. Air temperature 
was measured with Rosemount Model 102 probe. The 1 Hz 
data are used in this study.  

The key cloud microphysical properties used in this 
study, including liquid water content (LWC), droplet num-
ber concentration (N), and volume-mean radius (rv), are 
calculated from the FSSP-measured droplet size distribu-
tions; the last two bins (radius > 26 μm) are not included 
because the drops whose radii are larger than 25 μm are 
considered to be drizzle drops. A cloud record is defined by 
the criteria of N >10 cm−3 and LWC >0.001 g m−3 [36,37]. 
Both thresholds for N and LWC are introduced to eliminate 
the measured size distributions that are probably composed 

of large aerosols instead of cloud droplets. 
The 1D-C measurements are mainly used for determining 

whether or not a flight leg was drizzling; the first two bins 
(radius <27 μm) are not used. A leg was considered as driz-
zling if drizzle liquid water content was larger than 0.005  
g m−3; drizzling legs were further divided into heavily driz-
zling and lightly drizzling by drizzle liquid water content of 
0.1 g m−3. 

A total of 12 cases were measured during the cloud IOP, 
including stratocumulus, altocumulus, and cirrus. Lu et al. 
[38] focused on the five warm stratocumulus cases that ei-
ther had cloud-top temperature above zero degree Celsius or 
no ice crystals based on the CPI particle images (these 
ice-free clouds are referred to as warm clouds); they studied 
the dominant entrainment-mixing mechanisms. To further 
study the effect of mixing process and initiation of warm 
rain, this study will focus on both drizzling and non-driz- 
zling legs in the three drizzling clouds (17, 18, 21 March 
2000) among the five warm stratocumulus cases. A total of 
12 horizontal flight legs that satisfy these conditions are 
identified in the three cases: 6 in the 17 March 2000 case, 3 
in the 18 March 2000 case and 3 in the 21 March 2000 case. 

2  Results 

As in the work by Lu et al. [38], this study also analyzes 
entrainment-mixing processes in the framework of homo-
geneous/inhomogeneous entrainment-mixing model [29,39]; 
according to this framework, mixing processes can be clas-
sified into three major types. First, in homogeneous mixing, 
all cloud droplets are exposed to the same environmental 
conditions and evaporate at the same time; rv and N are an-
ticipated to be positively correlated. Second, in extreme 
inhomogeneous mixing, droplets surrounding an entrained 
dry air parcel evaporate to saturate the parcel and then mix-
ing between this parcel and the remaining part of cloud di-
lutes the cloud; as a result, rv changes slightly as N decreas-
es. The third mechanism is inhomogeneous mixing with 
subsequent ascent whereby a diluted parcel after extreme 
inhomogeneous mixing process is lifted upward, and the big 
droplets in the diluted parcel can grow faster than those in 
undiluted parcels; thus rv is negatively correlated with N.  

Similar to inhomogeneous mixing with subsequent as-
cent, rv and N in collision-coalescence are expected to be 
negatively correlated because the growth of big droplets 
consumes small ones [30]. Therefore, to distinguish these 
two processes, other criteria are needed. First, drizzling is 
the direct result of collision-coalescence; thus drizzling in-
dicates the occurrence of collision-coalescence. Second, the 
relationship between rv and LWC has a different behavior in 
these two processes. During the inhomogeneous mixing 
with subsequent ascent, rv vs. LWC is expected to be nega-
tively correlated, because droplets in a diluted parcel grow 
faster and bigger [11,21,40,41]. However, the continuous 
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collision-coalescence model shows that drv/dtLWC [42], 
i.e. a parcel with larger LWC tends to have larger rv; thus rv 
vs. LWC is generally expected to be positive at an early 
stage of collision-coalescence. At a late stage, the big drop-
lets produced during collision-coalescence might be beyond 
25 μm in radius, which are not counted in the calculations 
of N, LWC and rv; as a result, both LWC and rv might de-
crease; then the negative relationship of rv vs. N and the 
positive relationship of rv vs. LWC could be destroyed. 
That’s the reason to divide drizzling legs into lightly driz-
zling (the early stage) and heavily drizzling (the late stage).  

Based on the above criteria, 8 out of 12 horizontal legs 
are identified as affected by collision-coalescence because 
they had drizzle amount larger than 0.005 g m−3 and the 
relationships of rv vs. LWC were positive (Figure 1(a)). The 
reason to use the slopes of the relationships in Figure 1 in-
stead of correlation coefficients will be discussed later. Dif-
ferent from the legs affected by collision-coalescence, the 
non-drizzling leg affected by inhomogeneous mixing with 
subsequent ascent had a negative relationship of rv vs. LWC. 
As expected, the relationships of rv vs. N were all negative 
along the legs affected by inhomogeneous mixing with 
subsequent ascent and collision-coalescence (Figure 1(b)). 
To be specific, Figure 2 further shows the scatter plots of 
the relationships of rv vs. N and rv vs. LWC along Leg 3 in 
the 18 March 2000 case (affected by inhomogeneous mix-
ing with subsequent ascent) and along Leg 2 in the 17 
March 2000 case (affected by collision-coalescence). In  

 

Figure 1  Bar plots for (a) the slopes of volume-mean radius (rv) vs. liq-
uid water content (LWC) and (b) the slopes of rv vs. cloud droplet number 
concentration (N) dominantly affected by different processes along differ-
ent legs in the three cases. The numbers in the figures are horizontal leg 
numbers. 

 
 

 

Figure 2  (a) Relationship between cloud volume-mean radius (rv) and liquid water content (LWC) and (b) relationship between rv and droplet number 
concentration (N) along Leg 3 in the 18 March 2000 case. (c) and (d) are, respectively, the same as in (a) and (b) but for Leg 2 in the 17 March 2000 case. R, 
Correlation coefficients; P, P-value for the correlations. 
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addition, the other three non-drizzling legs affected by ho-
mogeneous or extreme inhomogeneous mixing are also 
shown in Figure 1; all the slopes of their microphysical re-
lationships were small (see detailed analysis in the work by 
Lu et al. [38]).  

Another interesting characteristic is that the slopes of rv 
vs. N (absolute values) and rv vs. LWC along the three 
heavily drizzling legs were smaller than those along the five 
lightly drizzling legs; the heavily drizzling leg in the 18 
March 2000 case had the smallest slopes (Figure 1). Thus rv 

increases faster with decreasing N or increasing LWC along 
lightly drizzling legs than along heavily drizzling legs, re-
flecting the effects of collision-coalescence with different 
intensities on cloud microphysics. Slopes of the relation-
ships can reflect this phenomenon but correlation coeffi-
cients cannot. That is the reason why the slopes are used 
here. Collision-coalescence with different intensities af-
fected the microphysical relationships by moving cloud 
water to drizzle water; but the signs of the relationships re-
mained. One possible reason was that the effect of moving 
cloud water to drizzle water was not significant enough to 
completely destroy the microphysical relationships; another 
possible reason was that when collision-coalescence moved 
liquid water from cloud water to drizzle water, condensation 
might occur at the same time, compensating the cloud water 
loss due to collision-coalescence; a drizzling cloud was a 
factory of drizzle and compensating cloud water through 
condensation was necessary to continual drizzle production.  

The above discussion shows a method to distinguish in-

homogeneous mixing with subsequent ascent and collision- 
coalescence; in fact, the two processes are closely connect-
ed [29]. To link the two processes, autoconversion threshold 
function (T), proposed by Liu et al. [30,31] is used. The 
expression of T can be generally described by 
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where r is droplet radius, n(r) is cloud droplet size distribu-
tion, and rc is critical radius for autoconverstion. Liu et al. 
[43] derived an analytical expression for predicting rc in the 
autoconversion parameterization: 
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where con = 1.15×1023 is an empirical coefficient.  
The value of T is a measure of the possibility of colli-

sion-coalescence process, ranging from no action (T = 0) to 
full action (T = 1). As an example, Figure 3 shows the rela-
tionships between rv and N and between rv and LWC with 
different T ranges along Leg 3 in the 18 March 2000 case 
(affected by inhomogeneous mixing with subsequent ascent) 
and Leg 2 in the 17 March 2000 case (affected by collision- 
coalescence).  

 
 

 

Figure 3  (a) Relationship between cloud volume-mean radius (rv) and liquid water content (LWC) and (b) relationship between rv and droplet number 
concentration (N) in different threshold function (T) ranges along Leg 3 in the 18 March 2000 case. (c) and (d) Same as in (a) and (b) but for Leg 2 in the 17 
March 2000 case. R, Correlation coefficients; P, P-value for the correlations. 



 Lu C S, et al.   Chin Sci Bull   February (2013) Vol.58 No.4-5 549 

The values of T along Leg 3 in the 18 March 2000 case 
were smaller than 0.6, whereas along Leg 2 in the 17 March 
2000 case, T was larger than 0.6. Both the relationships of rv 
vs. N along these two legs were negative. As to rv vs. LWC, 
Leg 2 in the 17 March 2000 case had a positive correlation. 
Along Leg 2 in the 18 March 2000 case, this relationship 
was negative for 0 ≤ T ≤ 0.2, but positive for 0.2 < T < 0.6; 
that is to say, some big droplets produced during inhomo-
geneous mixing with subsequent ascent (0 ≤ T ≤ 0.2) in-
crease T and already initiated collision-coalescence to some 
extent (0.2 < T < 0.6). The importance of inhomogeneous 
mixing for warm rain initiation is consistent with previous 
studies. For example, Lasher-Trapp et al. [21] found that 
larger droplets were more prominent when the mixing pro-
cess was assumed to be inhomogeneous than homogeneous. 
In contrast, Yum and Hudson [44] found that there were no 
larger droplets in diluted cloud parcels when clouds were 
affected by homogeneous mixing; then they pointed out that 
homogeneous mixing did not promote droplet growth.  

It is noteworthy that when T <0.2, collision-coalescence 
was relatively weak and other processes might occur at the 
same time. For example, in Figure 3(c) and (d), some data 
points had rv <7 μm, LWC <0.1 g m−3 and N <80 cm−3. This 
could be caused by evaporation of big droplets or secondary 
nucleation of entrained cloud condensation nuclei and sub-
sequent condensation. The relationships of rv vs. N were 
even weakly positive with T <0.2 along some other legs 
affected by collision-coalescence, but the relationships of rv 
vs. LWC were always positive. In general, the relationships 
of rv vs. N and rv vs. LWC along other legs affected by col-
lision-coalescence were similar to Figure 3(c) and (d).  

As mentioned above, only one leg was affected by in-
homogeneous mixing with subsequent ascent and much 
more legs (eight) were affected by collision-coalescence; 
the reason could be that collision-coalescence occurred 
quickly as long as big droplets were produced in inhomo-
geneous mixing with subsequent ascent, because the rate of 
collision-coalescence increased rapidly with droplet size 
[45]. The occurrence of collision-coalescence caused driz-
zling and a positive relationship of rv vs. LWC, hiding the 
signal of inhomogeneous mixing with subsequent ascent. It 
is difficult to capture the transition state in reality. In addi-
tion, inhomogeneous mixing (three legs) dominated over 
homogeneous mixing (one leg) along non-drizzling legs. 
Even along the leg dominantly affected by homogeneous 
mixing, inhomogeneous mixing also occurred [38]. In the 
further ascent and growth after inhomogeneous mixing, big 
droplets were produced in diluted parcels; these big droplets 
initiated collision-coalescence and produced drizzle drops.   

3  Concluding remarks 

A method to distinguish and link inhomogeneous mixing 
with subsequent ascent and collision-coalescence is pre-

sented with aircraft observations. Data along twelve aircraft 
horizontal legs in three drizzling stratocumulus cases are 
analyzed. Four legs were non-drizzling, three were lightly 
drizzling and the other five were heavily drizzling.  

The relationship between cloud droplet volume-mean ra-
dius (rv) and number concentration (N) is negative both in 
the inhomogeneous mixing with subsequent ascent and col-
lision-coalescence. Other criteria are needed to distinguish 
the two processes. One criterion for collision-coalescence is 
drizzling because drizzling is the result of collision-coales- 
cence. The other criterion is a positive relationship between 
rv and cloud liquid water content (LWC) because colli-
sion-coalescence is more vigorous when LWC is larger, 
which produces larger rv; whereas the relationship of rv vs. 
LWC is negative during inhomogeneous mixing with sub-
sequent ascent. The eight drizzling legs had all positive re-
lationships of rv vs. LWC, thus they were affected by colli-
sion-coalescence. The three heavily drizzling legs had 
smaller slopes of rv vs. N (absolute values) and rv vs. LWC 
than the five lightly drizzling legs, because collision-coa- 
lescence moved more liquid water from cloud water to driz-
zle water along heavily drizzling legs, tending to destroy the 
negative rv vs. N and positive rv vs. LWC. But still the signs 
of the two relationships remained; the reason could be that 
the effect of moving cloud water to drizzle water was not 
significant enough or condensation occurred at the same 
time, which compensated the cloud water loss due to colli-
sion-coalescence.  

The link of inhomogeneous mixing with subsequent as-
cent and collision-coalescence is based on threshold func-
tion (T), the possibility of occurrence of collision-coales- 
cence. The slope of rv vs. LWC was positive for the legs 
affected by collision-coalescence in different T ranges. 
Whereas for the leg affected by inhomogeneous mixing 
with subsequent ascent, the slope of rv vs. LWC was nega-
tive for 0 ≤ T ≤ 0.2, but positive for 0.2 < T < 0.6. The big 
droplets produced during inhomogeneous mixing with sub-
sequent ascent initiated collision-coalescence when 0.2 < T 
< 0.6, causing a positive relationship of rv vs. LWC. In ad-
dition, extreme inhomogeneous mixing dominated over 
homogeneous mixing along the four non-drizzling legs. So 
the three clouds were mainly affected by extreme inhomo-
geneous mixing; in the subsequent ascent, big droplets were 
produced and then initiated collision-coalescence. To the 
authors’ knowledge, this is the first time to distinguish and 
link the two processes (entrainment mixing and collision- 
coalescence) based on observational data. 

Several points are noteworthy. First, this study examines 
entrainment-mixing processes in the framework of homo-
geneous/inhomogeneous mixing model, without considering 
other models, such as entity-type entrainment mixing [46,47] 
and circulation mixing [40]. Second, the method presented 
here is based on three continental stratocumulus clouds with 
1 Hz data. More cloud types under different conditions (e.g. 
marine vs. continental) should be studied to test the method. 
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High resolution measurements are necessary [28] due to the 
scale dependence of physical processes [48]. Third, homo-
geneous/inhomogeneous mixing is closely related to en-
trainment rate [25,49], and further affects collision-coa- 
lescence. A comprehensive understanding of these factors/ 
processes warrants further study. Fourth, aerosol affects 
both entrainment mixing process and collision-coalescence 
among other cloud physical processes, and further affects 
cloud microphysical properties [50–52], thus it is necessary 
to account for aerosol in the future study on distinguishing 
and linking entrainment mixing processes and collision- 
coalescence.  
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